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One Bound to rule them all, One Bound to find them,
One Bound to bring them all, and in the darkness bind them.

– J.R.R. Tolkein (roughly)

Blum and Langford, 2003 “This quote is intended to describe the motivation for
this line of work rather than our current state.”
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Formulation of the learning problem

· Ingredients
· Example domain Z
· Hypothesis space W
· Loss function ` :W ×Z → R+

· Learning algorithm PW |S

· Input: training data S = (Z1, . . . , Zn), Zi
i.i.d.∼ µ

· Output: hypothesis W ∈ W
· Population risk of a hypothesis w ∈ W w.r.t. µ

Lµ(w) , Eµ[`(w,Z)]

· Goal: Output a hypothesis W based on S such that Lµ(W ) is suitably small either in
expectation or with high probability under any µ
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Generalization error and mutual information

· Empirical risk LS(w) , 1
n

∑n
i=1 `(w,Zi)

· Population risk Lµ(w) = ES′∼µ⊗n [LS′(w)], where S′ = (Z ′1, . . . , Z
′
n) is an i.i.d. sample

· Objective: Control the generalization error g(W,S) , Lµ(W )− LS(W ), both in
expectation and with high probability.

· Fitting-overfitting tradeoff

E[Lµ(W )] = E[LS(W )] + E[Lµ(W )]− E[LS(W )] = E[LS(W )] + E[g(W,S)]

· Expected generalization error

ESW [g(W,S)] = EPS⊗PW [LS(W )]− EPSW [LS(W )], PSW = µ⊗n ⊗ PW |S

controlled by the mutual information I(S;W ) (Russo & Zou, 2016; Xu & Raginsky, 2017).
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PAC-Bayesian inequalities

· Control the generalization error with high probability over a random draw of a sample S.

· McAllester (1999): Under bounded loss ` ∈ [0, 1], for every δ ∈ (0, 1), distribution µ on
Z, and fixed prior distribution Q over W, we have for all posterior distributions P � Q
over W, even such that depend on S,

Pr
S∼µ⊗n

EP [g(W,S)] ≤

√
D(P‖Q) + ln 2

√
n
δ

2n

 ≥ 1− δ.

· For a fixed posterior P , ES [D(P‖Q)] is minimized by the oracle prior,

Q? = ES∼µ⊗n [PW |S(·|S)].

· ES [D(P‖Q?)] = I(S;W ) .

· For any Q s.t. D(PW ‖Q) <∞, I(S;W ) = D(PW |S‖Q|PS)−D(PW ‖Q),
where D(PW |S‖Q|PS) =

∫
Zn D(PW |S=s‖Q)µ⊗n(ds).
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A whirlwind tour of information stability



Generalization and stability

· Let S ∼ µ⊗n, S′ ∼ µ⊗n be two independent training samples

· Replace-one operation: Run PW |S after replacing Zi with Z ′i for each i ∈ [n]

S = (Z1, . . . , Zi−1, Zi , Zi+1, . . . , Zn)
PW |S−−−→ W

S(i) = (Z1, . . . , Zi−1, Z
′
i , Zi+1, . . . , Zn)

PW |S−−−→ W (i)

 (W, S, Z ′i)
d
= (W (i), S(i), Zi)

· Population risk of PW |S is the empirical risk evaluated on a fresh independent sample S′

ES,W [Lµ(W )] = ES,S′EW
[
1
n

∑n
i=1 `(W,Z

′
i)
]

ES,W [LS(W )] = ES′ES,W
[
1
n

∑n
i=1 `(W,Zi)

]
= ES,S′EW

[
1
n

∑n
i=1 `(W

(i), Z ′i)
]

· Expected generalization error measures stability of PW |S w.r.t. local perturbations in S

∆ , ES,W [Lµ(W )− LS(W )] = 1
n

∑n
i=1 ES,S′EW

[
`( W , Z ′i )− `( W (i) , Z ′i )

]
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In expectation, generalization equals stability

· PW |S is stable on-average (w.r.t. to the replace-one operation) if

sn(PW |S) , sup
µ

∣∣∣ 1
n

n∑
i=1

ES,S′EW
[
`(W,Z ′i)− `(W (i), Z ′i)

]∣∣∣ n→∞−−−→ 0.

· PW |S generalizes on-average if

gn(PW |S) , sup
µ

∣∣ES,W [Lµ(W )− LS(W )]
∣∣ n→∞−−−→ 0.

Lemma (Bousquet and Elisseeff, 2002; Shalev-Shwartz et al., 2010)

For any learning algorithm PW |S , gn(PW |S) = sn(PW |S). In particular, PW |S generalizes
on-average if and only if it is stable on-average.
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Distributional stability and differential privacy

Definition (Dwork and Roth, 2014)

For any ε > 0, PW |S is ε-differentially private if, for any two datasets s, s′ ∈ Zn with

dH(s, s′) ,
n∑
i=1

1{zi 6=z′i} ≤ 1,

and for any measurable set O ⊆ W,

PW |S=s(O) ≤ eεPW |S=s′(O).

Definition (Dwork et al., 2015)

Let X and Y be random variables in arbitrary measurable spaces, and let X ′ be independent of
Y and equal in distribution to X. For α ≥ 0, the α-approximate max-information Iα∞(X;Y ) is
the least value of k such that for all events O ⊆ Zn ×W,

Pr ((X,Y ) ∈ O) ≤ ek · Pr
(
(X ′, Y ) ∈ O

)
+ α.
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Stability in max-information

· Max-information of an algorithm: PW |S has α-approximate max-information of k, denoted
as Iα∞,µ(PW |S , n) ≤ k, if for every distribution µ over Z, Iα∞(S;W ) ≤ k.

Proposition

Let S′ ⊥⊥W be an independent sample with the same distribution as S. If for some α ≥ 0,
Iα∞(S;W ) = k, then for any event O ⊆ Zn ×W,

Pr((S,W ) ∈ O) ≤ ek · Pr((S′,W ) ∈ O) + α.

Proposition (Dwork et al. 2015)

If PW |S is an ε-differentially private algorithm, then I∞,µ(PW |S , n) ≤ nε, and

Iα∞,µ(PW |S , n) ≤ nε2

2
+ ε

√
n

2
ln

2

α
, for any α > 0.

· Since I∞(S;W ) ≥ I(S;W ), stability in max-information =⇒ stability in MI for any µ.
Banerjee 8/ 31



Comparing different notions of stability

Pure differential privacy

Stability in max-information

Stability in mutual information
for any µ
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Different approaches to generalization

· Uniform convergence and VC dimension: Property of the hypothesis class

ES∼µ⊗n
[

sup
w∈W

|Lµ(w)− LS(w)|
]
≤ C√

n

where C is some distribution-independent measure of complexity

· Distributional stability: Property of the algorithm

· Differential privacy, TV-stability, KL-stability, Average leave-one-out KL-stability, etc.

· Uniform stability: Property of the loss and algorithm

· Mutual information stability: Property of the input and the algorithm
· Limitation: Not sensitive to low-probability failures

· e.g., compare sample complexities Ω
(

VCdim(F)+ln 1/δ

ε2

)
and Ω

(
I(S;W )

ε2δ

)
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One bound to rule’em all



The information exponential inequality

For any β > 0, define the annealed expectation

Mβ(w) = −β−1Λ−`(w,Z)(β) = −β−1 lnEµ[e−β`(w,Z)].

Lemma (Zhang, 2006)

For any real-valued loss `, fixed prior Q over W, and any posterior distribution P � Q over W
that depends on an i.i.d. training sample S,

ES exp
{
nβEP

[
Mβ(W )− LS(W )

]
−D(P‖Q)

}
≤ 1.

Mβ(w) acts as a surrogate for Lµ(w):

· By Jensen’s inequality: Mβ(w) ≤ Lµ(w)

· Bounds in the opposite direction under different assumptions on the loss

· e.g., if `(w,Z) is σ-sub-Gaussian under µ for every w ∈ W, then Lµ(w) ≤Mβ(w) + β
2σ

2

Banerjee 11/ 31



Theorem
Suppose that there exist a convex function ψ : R≥0 → R satisfying ψ(0) = ψ′(0) = 0, such that

sup
w∈W

β
(
Lµ(w)−Mβ(w)

)
≤ ψ(β), β > 0.

Then, for any β > 0, δ ∈ (0, 1), and fixed prior distribution Q over W,

Pr
S∼µ⊗n

(
∀P EP [g(W,S)] ≤ 1

nβ

[
D(P‖Q) + ln

1

δ

]
+
ψ(β)

β

)
≥ 1− δ.

Moreover, we have the following bound in expectation:

ESW [g(W,S)] ≤ ψ∗−1
(
D(P‖Q|PS)

n

)
,

where ψ∗−1 is the inverse of the Legendre dual of ψ.
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Properties of the cumulant generating function

Cumulant generating function of a random variable X:

ΛX(β) = lnE[eβX ], β > 0

Properties of ΛX(β) for β > 0:

· ΛX(β) is infinitely differentiable and convex in β

· 1
βΛX(β) is an increasing function of β

· E[X] ≤ 1
βΛX(β) ≤ Λ′X(β)

· If a ≤ X ≤ b a.s., then a ≤ Λ′X ≤ b

Examples of ΛX for concrete random variables:

· Bernoulli X: 1
βΛX(β) = 1

β ln
(
1− (1− eβ)E[X]

)
· σ-sub-Gaussian X: 1

βΛX(β) ≤ E[X] + βσ2

2
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Legendre dual of a smooth convex function and its inverse

Lemma (Boucheron et al, 2013)

Let ψ be a convex and continuously differentiable function defined on the interval [0, b), where
0 < b ≤ ∞. Assume that ψ(0) = ψ′(0) = 0.

Then, the Legendre dual of ψ,

ψ∗(t) , sup
β∈[0,b)

{βt− ψ(β)},

is a nonnegative convex and nondecreasing function on [0,∞) with ψ∗(0) = 0.

Moreover, its inverse ψ∗−1(y) , inf{t ≥ 0 : ψ∗(t) > y} is concave, and can be written as

ψ∗−1(y) = inf
β∈(0,b)

y + ψ(β)

β
.
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Bounded mutual information implies generalization

· σ-sub-Gaussian loss: ψ(β) = β2σ2

2 for β > 0, and ψ∗−1(y) =
√

2σ2y

· (σ, c)-sub-gamma loss: ψ(β) = β2σ2

2(1−cβ) for β ∈
(
0, 1c
)
, and ψ∗−1(y) =

√
2σ2y + cy

Corollary (Recovers Xu-Raginsky bound)

If `(w,Z) is σ-sub-Gaussian under µ for all w ∈ W, then

ESW [g(W,S)] ≤
√

2σ2

n
I(S;W ).

Corollary

If `(w,Z) is (σ, c)-sub-gamma under µ for all w ∈ W, then

ESW [g(W,S)] ≤
√

2σ2

n
I(S;W ) + c

I(S;W )

n
.

Banerjee 15/ 31



The Gibbs algorithm and ERM

· Idea: Stabilize ERM by controlling the input-output mutual information I(S;W ).

· Xu-Raginsky: Given a prior Q over W, the unique solution to the optimization problem

arg inf
PW |S

(
E[LS(W )] +

1

β
D(PW |S‖Q|PS)

)
is the Gibbs algorithm, which satisfies

P ?W |S=s(dw) =
e−βLs(w)Q(dw)

EQ[e−βLs(W ′)]
, for each s ∈ Zn.

· In the zero temperature limit (β →∞), the Gibbs algorithm recovers ERM. For β = 0,
the posterior reduces to the prior.

· When ` ∈ [0, 1], the Gibbs algorithm is (2β/n)-differentially private.
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One-shot channel simulation and mutual information

· “Single-draw” bound (Xu & Raginsky, 2017; Bassily et al., 2018):

Under bounded loss ` ∈ [0, 1], Pr
S,W

(
|g(W,S)| > ε

)
= O

(
I(S;W )

nε2

)
.

· One-shot channel simulation (Harsha et al, 2010): Find the minimum amount of
communication over a noiseless channel needed to simulate one use of PW |S .

· Alice and Bob has access to unlimited common randomness
· Alice observes a sample s ∈ Zn drawn according to PS
· Alice sends a message M to Bob via a noiseless channel

Q: What is the minimum E[L(M)] s.t. Bob can output a w ∈ W that is
distributed according to PW |S=s?

A : E[L(M)] ≈ I(S;W )
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Recovering classical PAC-Bayesian bounds

Corollary

[. . .] with probability of at least 1− δ over the choice of S ∼ µ⊗n, for all P � Q over W:

· The Catoni (2007) bound under {0, 1}-valued loss:

EP [Lµ(W )] ≤ Φ−1β

{
EP [LS(W )] +

1

nβ
D(P‖Q) +

1

nβ
ln

1

δ

}
, where Φ−1β (x) = 1−e−βx

1−e−β .

· The McAllester (2013) “linear PAC-Bayes bound” under [0, 1]-valued loss:

EP [Lµ(W )] ≤ 1

1− β
2

[
EP [LS(W )] +

1

nβ
D(P‖Q) +

1

nβ
ln

1

δ

]
, β < 2.

· The Germain et al. (2016) bound under (σ, c)-sub-gamma loss:

EP [Lµ(W )] ≤ EP [LS(W )] +
1

nβ
D(P‖Q) +

1

nβ
ln

1

δ
+

βσ2

2(1− cβ)
.
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Recovering Catoni’s bound

· [. . .] w.p. at least 1− δ over the choice of S ∼ µ⊗n, for all P � Q over W

EP [Mβ(W )] ≤ EP [LS(W )] +
1

nβ

(
D(P‖Q) + ln

1

δ

)
.

· For ` ∈ {0, 1},

Mβ(w) = Φβ(Lµ(w)) , −β−1 ln
(

1− (1− e−β)Lµ(w)
)
, β > 0.

· Φβ : (0, 1) 7→ (0, 1) is convex, increasing with inverse Φ−1β (x) = 1−e−βx
1−e−β

EP [Lµ(W )] ≤ Φ−1β

{
EP [LS(W )] +

1

nβ

(
D(P‖Q) + ln

1

δ

)}
.
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Compare with the more common PAC-Bayes derivation

· Since Zi
i.i.d.∼ µ, for any w ∈ W and β > 0,

e−nβMβ(w) = ES′∼µ⊗n
[
e−nβLS′ (w)

]
Pr

S∼µ⊗n

(
EP [Mβ(W )] ≤ EP [LS(W )] +

1

nβ

[
D(P‖Q) + ln

1

δ

+ lnEQES′∼µ⊗n e
nβ
(
Mβ(W )−LS′ (W )

)
︸ ︷︷ ︸

= 0

])
≥ 1− δ

Pr
S∼µ⊗n

(
EP [Lµ(W )] ≤ EP [LS(W )] +

1

nβ

[
D(P‖Q) + ln

1

δ

+ lnEQES′∼µ⊗n e
nβ
(
Lµ(W )−LS′ (W )

) ])
≥ 1− δ
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Optimizing β

Proposition

If `(w,Z) is σ-sub-Gaussian under µ for all w ∈ W, then for any constants α > 1 and v > 0,
with probability of at least 1− δ,

EP [g(W,S)] ≤ α

nβ

(
D(P‖Q) + ln

logα
√
n+K

δ

)
+
βσ2

2
, ∀β ∈ (0, v],

where K = max
{

logα
(
vσ√
2α

)
, 0
}

+ e.

· Choice of β balances the first and second terms. Optimal order would be for 1/
√
n.

· β cannot be optimized for “free”. Overlooked in Hellström and Durisi, 2020a; 2020b.

· Under [0, 1]-valued loss, Maurer (2004) gave a version of the McAllester (2013) linear

PAC-Bayes bound that is uniform in β at the cost of a O
(
ln
√
n

n

)
term.
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PAC-Bayes-CMI and differentially private priors



The conditional mutual information (CMI) bound
Steinke & Zakynthinou (2020)

· Draw an i.i.d. “supersample” Z̃ ∈ Z2n[ ]
Z̃1,0 Z̃2,0 . . . Z̃n,0 Ui = 0

Z̃1,1 Z̃2,1 . . . Z̃n,1 Ui = 1
S , Z̃U =

(
Z̃1,U1 , . . . , Z̃n,Un

)
· Randomly partition Z̃ into input samples S , Z̃U and “ghost” samples G , Z̃U .

“Selector” U (n uniform bits) specifies the partition independently of Z̃ and the
randomness of the algorithm. U is a vector obtained by inverting the bits of U .

· Run algorithm on input S = Z̃U mapping it to a random element W of W.

· After observing the output, how well can one distinguish the true inputs from their ghosts?

CMIµ
(
PW |S

)
, I(W ;U |Z̃) CMIµ(PW |S) ≤ n log 2

· When the loss is bounded in [0, 1], ESW [g(W,S)] ≤
√

2

n
· CMIµ

(
PW |S

)
.
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Unconditional vs. conditional mutual information

“How much information does the output reveal
about the input ?”

vs.
“How much information does the output reveal

about a randomly chosen subset of the supersample ?”

Courtesy: Macaroni Penguin Art Print Smallwoods Studios

Sketch a suspect

Courtesy: speedbump.com

Recognize a suspect from a lineup

vs.
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A hypothesis testing interpretation of CMI

· Suppose that we observe the output W and wish to identify S given access to Z̃.

· For any estimator Û = φ(W, Z̃) of U ,

inf
φ

Pr
(
φ(W, Z̃) 6= U

)
≥ 1− I(W ;U |Z̃) + log 2

n log 2
.

· I(W ;U |Z̃) upper-bounds the probability of successfully identifying U from Û .

· Mutual information decomposition and the CMI

W − Z̃U − S and W − S − Z̃U =⇒ I(S;W ) = I(Z̃U ;W ) = I(W ; Z̃) + I(W ;U |Z̃).
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PAC-Bayes-CMI bound

· Ghost sample G , Z̃U is independent of W

g(W, Z̃, U) , LG(W )− LS(W ) where

{
LG(w) , 1

n

∑n
i=1 `

(
w, (Z̃U )i

)
LS(w) , 1

n

∑n
i=1 `

(
w, (Z̃U )i

)
· Prior Q ≡ Q

W |Z̃=z̃ and posterior P ≡ P
W |Z̃=z̃, U=u

Proposition

Under bounded loss ` ∈ [0, 1], for every β > 0, δ ∈ (0, 1),

EP [g(W, Z̃, U)] ≤ 1

nβ

(
D(P‖Q) + ln

1

δ

)
+
β

2

with probability of at least 1− δ over a draw of Z̃, U . Moreover,

E
W,Z̃,U

[g(W, Z̃U )] ≤
√

2

n
·D(P‖Q|P

Z̃,U
).
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Differentially private data-dependent priors

· A PAC-Bayes prior cannot depend on S but can depend on µ. However, our access to µ is
only through S.

· Learn a prior using S in a differentially private fashion. Can then treat the prior “as if” it
is independent of S.

Proposition

Let K(S,W) denote the set of Markov kernels from S to W. Let Q0 ∈ K(S,W) be an
ε-differentially private algorithm. Then with probability of at least 1− δ over the choice of
S ∼ µ⊗n, for all distributions P over W,

EP [Mβ(W )] ≤ EP [LS(W )] +
1

nβ

D(P‖Q0(S)) + ln
2

δ
+

nε2

2
+ ε

√
n

2
ln

4

δ


· The bound is valid for any loss and similar in spirit to a result by Dziugaite & Roy (2018),

who gave a bound for the [0, 1]-valued loss.
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Information complexity minimization and “flat” minima



Information Complexity Minimization (ICM)

· Recipe: Given any prior Q, minimize the Information Complexity (IC) w.r.t. the posterior

EP [Ls(W )] +
1

β
D(P‖Q) .

· The minimizing distribution is the Gibbs distribution P ?(w) ∝ e−βLs(w)Q(w) and

EP ? [Ls(W )] +
1

β
D(P ?‖Q) = − 1

β
lnEQ[e−βLs(W )]︸ ︷︷ ︸

Optimal IC

.

· Optimal IC and “flat” minima: For Q = N
(
w, (βγ)−1Ik

)
,

− 1

β
ln

∫
w′∈Rk

e−β
[
Ls(w′)+

γ
2 ‖w−w

′‖2
]
dw′

measures the log-volume of low-loss parameter configurations around w.

· Entropy-SGD (Chaudhari et al., 2017): Minimize the Optimal IC w.r.t. Q.
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PAC-Bayes-SGD
Langford & Caruana (2002), Dziugaite & Roy (2018)

· G : Set of all Gaussian posteriors of the form P = N (wP , diag(γ)).

· Prior Q = N (w0, λIk) centered at a non-trainable random initialization, w0.

Proposition

Under bounded loss ` ∈ [0, 1], for any δ, δ′ ∈ (0, 1), fixed α > 1, c ∈ (0, 1), b ∈ N, and
m,n ∈ N, with probability of at least 1− δ − δ′ over a draw of S ∼ µ⊗n and W ∼ P⊗m,

EP [Lµ(fW )] ≤ inf
P∈G, β>1, λ∈(0,c)

Φ−1β

{
L̂S(fW ) +

α

nβ
D(P‖Q) +R(λ, β; δ, δ′)

}
,

where R , α
nβ

(
ln
(
lnα2βn
lnα

)2
+ ln

(
π2b2

6δ

(
ln c

λ

)2))
+
√

1
2m ln 2

δ′ , and Φ−1β (x) = 1−e−βx
1−e−β .

· For large n, m, optimization is dominated by the IC term.
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A PAC-Bayes bound using loss curvature information

Laplace approximation of the Gibbs posterior given a fixed prior Q = N (wQ, λ
−1Ik)

· Quadratic approximation of loss around a local minimizer wP ,

L̃S(w) = 1
2(w − wP )>H(w − wP ), H = ∇2LS(w)|w=wP

· Optimal posterior
P = N (wP , H

−1
λ ), where Hλ , (nβH + λIk) .

· λ > 0 is sufficiently large so that Hλ is positive definite

Proposition

Let {λi}ki=1 be the eigenvalues of Hλ and suppose that λi ≥ λ > 0 for all i. Then with
probability of at least 1− δ over a draw of the sample S,

EP [Mβ(W )] ≤ EP [LS(W )] +
1

nβ
ln

1

δ
+

1

nβ

λ
2
‖wQ − wP ‖2 +

1

2

k∑
i=1

ln
λi
λ

 .
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Occam factor and flat minima

EP [Mβ(W )] ≤ EP [LS(W )] +
1

nβ
ln

1

δ
+

1

nβ

λ
2
‖wQ − wP ‖2 +

1

2

k∑
i=1

ln
λi
λ

 .

· Negative of the log-ratio term

− 1

2

k∑
i=1

ln
λi
λ

= ln
√

det λ
Hλ

is the logarithm of the Occam factor (Mackay, 1992).

· Occam factor: Fraction of the prior parameter space consistent with the training data.

· Log-Occam factor: Entropy of a Gaussian posterior with scaled covariance λ(Hλ)−1.

· Information we gain about the model’s parameters after seeing the data

· Minimizing the bound w.r.t. the posterior leads to solutions with higher entropy and
hence wider minima.
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Conclusion and future work

Summary

· Unified treatment of PAC-Bayes and IT-based generalization bounds

· New bounds

· PAC-Bayes-CMI bound
· PAC-Bayes bound for data dependent priors and unbounded losses
· PAC-Bayes bound motivated by an Occam factor argument in relation to flat minima

· Examples of ICM for learning with neural networks: Entropy- and PAC-Bayes- SGD

Future scope

· Bounds we studied embody the dictum “bounded information implies learning”

· Does learning imply bounded information? No!

· Results due to Bassily et al. (2018); Nachum & Yehudayoff (2019) for IT-based framework
· Result due to Livni & Moran (2020) in a similar vein for PAC-Bayesian framework

· Identify the common structural properties of these negative results
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