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Positive information decomposition and the UI



Positive information decomposition

Suppose we want to know S, but can only observe Y and/or Z

Y Z

S

How is the information about S distributed?
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• Synergy: Y , Z independent binary, S = Xor(Y,Z):
I(S;Y ) = I(S;Z) = 0, but I(S;Y Z) = 1 bit

• Redundancy: S = Y = Z uniform binary: I(S;Y ) = I(S;Z) = 1 bit
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Positive information decomposition

Suppose we want to know S, but can only observe Y and/or Z

Y Z

S

Classify information about S according to “who knows what”:

Williams and Beer (2010), “Nonnegative decomposition of multivariate

information” [WB10]

Unique: information known to Y , but unknown to Z
Redundant: information known in common to Y and Z
Synergistic: information that materializes only when Y and Z act jointly

In general, all three flavors may be present at the same time.
How can we separate them?
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Positive information decomposition

Suppose we want to know S, but can only observe Y and/or Z

Y Z

S

Mathematically, we are looking for a decomposition:

I(S;Y, Z) = SI(S;Y,Z)︸ ︷︷ ︸
shared information (redundancy)

+ UI(S;Y \Z)︸ ︷︷ ︸
unique information of Y

+ UI(S;Z\Y )︸ ︷︷ ︸
unique information of Z

+ CI(S;Y,Z)︸ ︷︷ ︸
complementary information (synergy)

I(S;Y ) = SI(S;Y,Z) + UI(S;Y \Z)

I(S;Z) = SI(S;Y,Z) + UI(S;Z\Y )
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Information decomposition

CI

UIY \Z UIZ\Y

SI

I(S;Y,Z)

Need to fix a degree of freedom
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The Unique Information (UI)
Bertschinger, Rauh, Olbrich, Jost, Ay (2014) [BRO+14]

PS ∼ S Z
PZ|S

Y

PY |S λ
UIP (S;Y \Z) := min

Q∈∆P

IQ(S;Y |Z)

∆P =
{
QSY Z ∈ ∆: QSY = PSY , QSZ = PSZ

}
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PS ∼ S Z
PZ|S

Y

PY |S λ
UIP (S;Y \Z) := min

Q∈∆P

IQ(S;Y |Z)

∆P =
{
QSY Z ∈ ∆: QSY = PSY , QSZ = PSZ

}
Convex program over a polytope of dimension |S|(|Y| − 1)(|Z| − 1)

simplex of joint distributions ∆

∆P P

Computing the Unique Information, Proc. IEEE ISIT, [BRM18]
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The Unique Information (UI)
Bertschinger, Rauh, Olbrich, Jost, Ay (2014) [BRO+14]

PS ∼ S Z
PZ|S

Y

PY |S λ
UIP (S;Y \Z) := min

Q∈∆P

IQ(S;Y |Z)

∆P =
{
QSY Z ∈ ∆: QSY = PSY , QSZ = PSZ

}
Theorem 1 ([BRO+14])

UI(S;Y \Z) = 0 if and only if there is a stochastic matrix λ with

P (y|s) =
∑
z

λ(y|z)P (z|s).

D. Blackwell, “Equivalent comparisons of experiments,” Ann. Math. Stat. [Bla53]

Corollary 2 (by Blackwell’s theorem)
UI(S;Y \Z) = 0 ⇐⇒ Z performs better than Y in any decision problem.
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UI and secret key decomposition



The secret key agreement problem

Zn

Y nSn
Alice Bob

Eve

(S, Y, Z) ∼ P

C1, C2, ...

K K′

Pr[K = K ′] h 1

I(K;Zn,
−→
C ) h 0

1
nH(K)
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The one-way secret key rate (S→)

• The protocol is one-way if Alice is allowed to send only one message
and Bob none

• Ahlswede and Csiszár [AC93] showed:

S→(S;Y |Z ) = max
PUV |SY Z :V−U−S−Y Z

I(U ;Y |V )− I(U ;Z|V )

where it suffices to restrict the range of U and V resp. to |S|2 and |S|

• No analogous formula for the two-way secret key rate, S↔(S;Y |Z )

• Value of S↔ is known only for a handful of distributions
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Bounds on the two-way secret key rate

Trivial upper bound [Mau93]

S↔(S;Y |Z ) ≤ min{I(S;Y ), I(S;Y |Z)}
Intrinsic information [MW99]

I↓(S;Y |Z) := min
PZ′|Z

I(S;Y |Z ′), |Z ′| ≤ |Z|

Reduced intrinsic information [RW03]

I↓↓(S;Y |Z) := inf
PU|SY Z

I↓(S;Y |ZU) +H(U)

Secret key decomposition-based bounds [GA10, GA17]

B1(S;Y |Z) := min
PZ′|SY Z

I(S;Y |Z ′) + I(SY ;Z ′|Z), |Z ′| ≤ |S||Y||Z|

Full chain of bounds on S↔

S→ ≤ S↔ ≤ B1 ≤ I↓↓ ≤ I↓ ≤ I
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Secret key decomposition

Zn

Y nSn
Alice Bob

K K
Eve

C1, C2, ...

Charlie

Z′n
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Secret key decomposition

Z ′

Z ′
s

S↔(S;Y |Z )

s1:

s2:

does not know

knows

Secret key decomposition property [GA10, GA17]

∀ (S, Y, Z, Z ′) : S↔(S;Y |Z ) ≤ S↔
(
S;Y

∣∣Z ′ )︸ ︷︷ ︸
unique (w.r.t. Z′)

+S→
(
SY ;Z ′|Z

)︸ ︷︷ ︸
shared (with Z′)
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Unique information decomposition

Z ′

Z ′
u

UI(S;Y \Z)

u1:

u2:

does not know

knows

Triangle inequality for the UI [RBOJ19]

∀ (S, Y, Z, Z ′) : UI(S;Y \Z) ≤ UI(S;Y \Z ′)︸ ︷︷ ︸
unique (w.r.t. Z′)

+UI(S;Z ′\Z)︸ ︷︷ ︸
shared (with Z′)
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UI and Secret key decomposition

Unique information decomposition property [RBOJ19]

∀ (S, Y, Z, Z ′) : UI(S;Y \Z) ≤ UI(S;Y \Z ′) + UI(SY ;Z ′\Z)

UI ≤ B1 ≤ I↓↓ ≤ I↓ ≤ I

Secret key decomposition property [GA10, GA17]

∀ (S, Y, Z, Z ′) : S↔(S;Y |Z ) ≤ S↔
(
S;Y

∣∣Z ′ )+ S→
(
SY ;Z ′|Z

)
−→ Key takeaway: The UI is similar in spirit to the secret key rates

• UI(S;Y \Z): Information about S known to Y but unknown to Z

• S↔(S;Y |Z ): Information common to S and Y that is unique w.r.t. Z

P.K. Banerjee (MPI MiS) 10/ 14



UI-based bounds on secret key rates



UI is a secrecy monotone

Key property: UI is nonincreasing under local operations (LO) of Alice
and Bob and one-way public communication (PC) by Alice

Theorem 3
S→ ≤ UI

Theorem 4
Let (S, Y, Z) be a triple of random variables such that S↔(S;Y |Z ) > 0. If
either UI(S;Y \Z) or UI(Y ;S\Z) vanishes, then the secret key rate in
the active adversary scenario vanishes, or else it equals S↔(S;Y |Z ).
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UI-based bounds on secret key rates

Theorem 5
S→ ≤ UI ≤ B1 ≤ I↓↓ ≤ I↓ ≤ I

Full chain of bounds on S↔

S→ ≤ S↔ ≤ B1 ≤ I↓↓ ≤ I↓ ≤ I

Given (S, Y, Z) ∼ P , let

Q∗ ∈ argminQ∈∆P
IQ(S;Y |Z)

CIP (S;Y,Z) = IP (S;Y |Z)− UI(S;Y \Z)

= IP (S;Y |Z)− IQ∗(S;Y |Z)

Q∗ is called a minimum synergy distribution, as

CIP (S;Y,Z) = 0 if and only if P = Q∗

−→ Choosing P = Q∗, all upper bounds on S↔ collapse to the UI
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A conjecture

UI cannot be an upper bound on the two-way rate:

• If the pairs (S, Y ) and (S,Z) have the same distribution, then
UI(S;Y \Z) = UI(S;Z\Y ) = 0

• S↔ can still be positive in such a situation [GA17]

Conjecture 6

UI(S;Y \Z) ≤ S↔(S;Y |Z )

Sandwich bound on S↔(S;Y |Z ): If Conjecture 6 is true, then

UI(S;Y \Z) = IQ∗(S;Y |Z) ≤ S↔(S;Y |Z ) ≤ IP (S;Y |Z)

The set of all Q∗ is a set of distributions for which the UI equals S↔

−→ Operationalizes the UI
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DSBE source example

S Y

Z

BEC(ε)

BSC(1− p)

0.0 0.2 0.4 0.6 0.8 1.0
ǫ

0.00

0.01

0.02

0.03

S
↔

b
ou
nd

s

DSBE(0.6, ǫ)

S→(S;Y |Z)
UI(S;Y \Z)
B1(S;Y |Z)
min{I(S;Y ), I(S;Y |Z)}

· S↔ = 0 ⇐⇒ ε ≤ 1−p
p

· UI = 0 ⇐⇒ ε ≤ 2(1− p)
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Unique information and deficiencies

Output deficiency

S Y

S YZ

κ

µ λ

δπo (µ, κ) := min
λ∈M(Z;Y)

D(κ‖λ ◦ µ|πS)

Input deficiency

SY

SY Z

κ̄

λ̄ µ̄

δπi (µ̄, κ̄) := min
λ̄∈M(Y;Z)

D(κ̄‖µ̄ ◦ λ̄|πY )

Unique informations and deficiencies, Proc. IEEE Allerton, [BOJR18]
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Vanishing sets of UI and δπi are different

PS
1
2

1
2

S Y Z

0

1

0

1

e
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e

1− ε1 1− ε2

1− ε1 1− ε2

1− ε
S Z
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1− ε
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e

e
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0

ε = 1− (1− ε1)(1− ε2) = 1
3
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PY
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Y S
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6 e
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0 0
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PZ
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3

Z S

0.5
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1
3

ε1 = 1
6 ε2 = 1

5

UI = 1
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Properties of the UI
Non-locking and monotonicity under LO of Eve

The secret key rate is non-locking:

∀ (S, Y, Z, U) : S↔(S;Y |ZU ) ≥ S↔(S;Y |Z )−H(U)

P.1 UI is non-locking

∀ (S, Y, Z, U) : UI(S;Y \ZU) ≥ UI(S;Y \Z)−H(U)

If Eve sends Z through a channel PZ′|Z , then the key rate cannot decrease:

S↔(S;Y |Z ) ≤ S↔
(
S;Y

∣∣Z ′ ) for any PZ′|Z

P.2 Monotonicity under local operation (LO) of Eve

∀ (S, Y, Z, Z ′) : SY − Z − Z ′, we have UI(S;Y \Z) ≤ UI(S;Y \Z ′)
A consequence of Properties P.1 and P.2:

UI ≤ I↓↓ ≤ I↓

P.K. Banerjee (MPI MiS) 5/ 7
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∀ (S, Y, Z, U) : S↔(S;Y |ZU ) ≥ S↔(S;Y |Z )−H(U)

P.1 UI is non-locking

∀ (S, Y, Z, U) : UI(S;Y \ZU) ≥ UI(S;Y \Z)−H(U)

If Eve sends Z through a channel PZ′|Z , then the key rate cannot decrease:

S↔(S;Y |Z ) ≤ S↔
(
S;Y

∣∣Z ′ ) for any PZ′|Z

P.2 Monotonicity under local operation (LO) of Eve
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Properties of the UI
Monotonicity under LOPC

P.3 Monotonicity under local operation (LO) of Alice and Bob

∀ (S, S′, Y, Z) : Y Z − S − S′, we have UI(S;Y \Z) ≥ UI(S′;Y \Z)

and likewise for local operations on Y

P.4 Monotonicity under (one-way) public communication (PC) by Alice
For all (S, Y, Z) and functions f over the support of S, we have

UI(S;Y \Z) ≥ UI((S, f(S)); (Y, f(S)) \ (Z, f(S)))

UI(S;Y \Z) is a monotone under LO of Alice and Bob and
one-way PC of Alice
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Properties of the UI
Additivity and asymptotic continuity

P.5 Normalization For a perfect secret bit Φ(s, y, z) := 1
2δs,y ×QZ(z),

UIΦ(S, Y \Z) = 1

P.6 Additivity on tensor products For n i.i.d. copies of (S, Y, Z) ∼ P ,

UI(Sn;Y n\Zn) = n · UI(S;Y \Z)

P.7 Asymptotic continuity

For any P, P ′ ∈ PS×Y×Z , and ε ∈ [0, 1], if ‖P − P ′‖1 = ε, then

UIP ′(S;Y \Z)− UIP (S;Y \Z) ≤ ζ(ε) + 5
2ε log min{|S|, |Y|}

for some bounded, continuous function ζ : [0, 1]→ R+ s.t. ζ(0) = 0.
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