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GNNs as message passing networks

- Input to the GNN is a graph G = (V, ) endowed with node embeddings or features.
- G is used both as a part of the data and the computational structure.

- Each message-passing step is parameterized by a neural network layer.

- At each layer:

- Every node computes a message and sends it to its neigbors.

- Every node aggregates messages from its neighbors and combines them with its own
representation.

- After L layers, a node's representation captures structural information within its

L-hop neighborhood.
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- Unrolling the recursion at node v gives v's computation graph: A tree of depth L rooted
at v that represents the L-hop neighborhood of v, where the children of any node w in the
tree are the nodes adjacent to u.



Long-range tasks and information oversquashing

The NEIGHBORSMATCH problem (Alon and Yahav, 2021):

- Predict the label for the target node T. Correct label is the label of the blue node that has
the same number of orange neighbors as T. In the example, the correct label is B.

- For all examples in the training dataset, there is a unique blue node with a matching
number of neighbors as the target.

- With increasing L, recursive nature of the neighborhood aggregation process leads to
information oversquashing, when an exponential amount of information is “compressed”
into fixed-size node vectors.



Structural bottlenecks and expander graphs

Definition
The isoperimetric ratio or the Cheeger constant of G = (V, &) is
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where S = {(u,v): u € S,v € V\ S, (u,v) € E} is the edge boundary of S C V.
For fixed d and B > 0, a d-regular graph G on n nodes is a (n.d, 3)-expander if h(G) > .
An infinite family (G;)i>1 of (ni,d, B)-expanders forms an expander family if h(G;) > B Vi.

- Cheeger's inequality relates the spectral gap of G to it's Cheeger constant:

AQ;L) < WG < \J2da(L), L=dl—A.




Expansion using Greedy Random Local Edge Flips (G-RLEF)
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- For d-regular input G on n nodes, repeatedly applying RLEF produces an expander in

O(d?n?\/logn) steps with high probability (Allen-Zhu et al., 2016).

- Greedy version of RLEF: Sample the hub edge in proportion to their effective resistance.

- Intuition: Effective resistance captures the “electrical importance” of an edge. High

resistance paths span structural bottlenecks and should be sampled with higher probability.

- For still faster convergence, optimize directly for the rate of graph expansion (FoSR,

Karhadkar, B., Montdfar, ICLR 2023).

- Navigate the Oversquashing vs. Oversmoothing trade-off using relational GNNs.
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