

OpenReview

Overview

We point out that a number of well-known PAC-Bayesian-style and information-theoretic (IT) generalization bounds for randomized learning algorithms can be derived under a common framework starting from a fundamental *information exponential inequality*.

Three key ideas guide our discussion:

- 1. The lesser the information revealed by an algorithm about its input, the better the generalization.
- 2. Data-dependent priors entail tighter generalization bounds.
- 3. Optimizing such bounds is a natural recipe for designing new learning algorithms.

General formulation of learning problem

- Examples domain $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ of instances and labels
- Hypothesis space \mathcal{W} , and a fixed loss function $\ell : \mathcal{W} \times$
- A learning algorithm, which is a Markov kernel $P_{W|S}$ · Input: Training data $S = (Z_1, \ldots, Z_n), \quad Z_i \stackrel{\text{i.i.d.}}{\sim} \mu$
- Output: hypothesis $W \in \mathcal{W}$, which is a random element of \mathcal{W}
- True risk of a hypothesis $w \in \mathcal{W}$ on μ , $L_{\mu}(w) := \mathbb{E}_{\mu}[\ell(w, Z)]$
- Empirical risk on the training sample S, $L_S(w) := \frac{1}{n} \sum_{i=1}^n \ell(w, Z_i)$

Goal is to control the generalization error, $g(W, S) := L_{\mu}(W) - L_{\mu}(W)$ $L_S(W)$, either in expectation or with high probability.

• The expected generalization error can be written as the difference of two expectations of the same loss function,

 $\mathbb{E}_{SW}[g(W,S)] = \mathbb{E}_{P_S \otimes P_W}[L_S(W)] - \mathbb{E}_{P_{SW}}[L_S(W)],$ where $P_{SW} = \mu^{\otimes n} \otimes P_{W|S}$.

Key insight. The expected generalization error reflects the dependence between the input data and the output hypothesis, and this dependence can be measured by their *mutual information* (MI).

PAC-Bayes and Information Complexity

Pradeep Kr. Banerjee¹ Guido Montúfar^{1,2} ¹Max Planck Institute for Mathematics in the Sciences (MPI MIS), Leipzig ²University of California, Los Angeles (UCLA)

$$\mathcal{Z} \to [0,\infty)$$
 with

The information exponential inequality

• For any $\beta > 0$, we define the annealed expectation, $M_{\beta}(w) =$ $-\beta^{-1} \ln \mathbb{E}_{\mu}[e^{-\beta \ell(w,Z)}]$, which acts as a surrogate for $L_{\mu}(w)$.

Lemma 1 (Information exponential inequality, IEI [Zhang, 2006]). For any prior Q over \mathcal{W} , any real-valued loss ℓ , and any posterior distribution $P \ll Q$ over \mathcal{W} that depends on an i.i.d. training sample S, we have $\mathbb{E}_S \exp\{n\beta \mathbb{E}_P[M_\beta(W) - L_S(W)] - D(P||Q)\} \le 1.$

• The IEI implies bounds both in probability and in expectation for the quantity $n\beta \mathbb{E}_P[M_\beta(W) - L_S(W)] - D(P||Q)$, and is the key tool for showing our main result:

Theorem 2. Let Q be a prior distribution over \mathcal{W} that does not depend on S, and let ℓ be a real-valued loss function on $\mathcal{W} \times \mathcal{Z}$. Suppose that there exist a convex function $\psi \colon \mathbb{R}_{>0} \to \mathbb{R}$ satisfying $\psi(0) = \psi'(0) = 0$, such that $\sup_{w \in \mathcal{W}} [L_{\mu}(w) - M_{\beta}(w)] \leq \frac{\psi(\beta)}{\beta}, \forall \beta > 0.$ Then, for any $\beta > 0$, and $\delta \in (0, 1]$, with probability of at least $1 - \delta$ over the choice of $S \sim \mu^{\otimes n}$, for all distributions $P \ll Q$ over \mathcal{W} (even such that depend on S), we have

 $\mathbb{E}_P[g(W,S)] \le \frac{1}{n\beta} \Big(D(P \| Q) +$ Moreover, we have the following bound in expectation:

 $\mathbb{E}_{SW}[g(W,S)] \le \psi^{*-1} \left(\frac{D(P||Q|P_S)}{n} \right),$ (2)

where ψ^{*-1} is the inverse of the Fenchel-Legendre dual of ψ .

Recovering known IT and PAC-Bayes bounds

• Under a *sub-gaussian* loss assumption, we recover the **MI-based bound** due to [Xu and Raginsky, 2017]:

Corollary 3. If $\ell(w, Z)$ is σ -sub-Gaussian under μ for all $w \in \mathcal{W}$, then $\mathbb{E}_{SW}[g(W,S)] \leq \sqrt{2\sigma^2 I(S;W)}/n.$

• Under a *sub-gamma* loss assumption, fixing $\beta = 1$ in (1), we recover the **PAC-Bayesian bound** due to [Germain et al., 2016]:

Corollary 4. If $\ell(w, Z)$ (σ, c)-sub-gamma with c < 1, then with probability of at least $1 - \delta$ over the choice of $S \sim \mu^{\otimes n}$, for all $P \ll Q \text{ over } \mathcal{W}, \ \mathbb{E}_P[g(W,S)] \leq \frac{1}{n} (D(P || Q) + \ln(1/\delta)) + \frac{\sigma^2}{2(1-c)}.$

$+\ln\frac{1}{\delta}$ -	$+ \frac{\psi(eta)}{eta}.$	(1)
--------------------------	----------------------------	-----

Differentially private data-dependent priors

• To have a good control over the KL term in (1), it is desirable that Qbe "aligned" with the data-dependent posterior P.

Key insight. Choosing Q based on S in a differentially private fashion allows us to treat Q "as if" it is independent of S.

• We have the following result:

for all distributions P over \mathcal{W} ,

Information complexity minimization (ICM)

- schemes that search for "flat minima" solutions.
- ment in relation to flat minima.

- C., Chayes, J., Sagun, L., and Zecchina, R. (2017). Entropy-SGD: Biasing gradient descent into wide valleys. In International Conference on Learning Representations.
- PAC-Bayesian theory meets Bayesian inference. In Advances in Neural Information Processing Systems, pages 1884–1892.
- [Xu and Raginsky, 2017] Xu, A. and Raginsky, M. (2017). In Advances in Neural Information Processing Systems, pages 2524–2533.
- [Zhang, 2006] Zhang, T. (2006). Information-theoretic upper and lower bounds for statistical estimation. *IEEE Transactions on Information Theory*, 52(4):1307–1321.

Theorem 5. Let $\mathcal{K}(\mathcal{S}, \mathcal{W})$ denote the set of Markov kernels from \mathcal{S} to \mathcal{W} . Let $Q^0 \in \mathcal{K}(\mathcal{S}, \mathcal{W})$ be an $(\epsilon, 0)$ -differentially private algorithm. Let ℓ be a real-valued loss on $\mathcal{W} \times \mathcal{Z}$, let $\beta > 0$, and let $\delta \in (0, 1]$. Then with probability of at least $1 - \delta$ over the choice of $S \sim \mu^{\otimes n}$,

 $\mathbb{E}_P[M_{\beta}(W)] \leq \mathbb{E}_P[L_S(W)] + \frac{D(P \| Q^0(S)) + \ln \frac{2}{\delta} + \frac{n\epsilon^2}{2} + \epsilon \sqrt{\frac{n}{2}} \ln \frac{4}{\delta}}{n\beta}.$

• Given a prior, choosing a posterior to minimize a PAC-Bayesian bound gives rise to a method called *information complexity minimization*. • Practical examples of ICM for learning with neural networks, e.g., Entropy-SGD [Chaudhari et al., 2017], can be viewed as optimization

• We show a PAC-Bayes bound motivated by an Occam's factor argu-

References

[Chaudhari et al., 2017] Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, [Germain et al., 2016] Germain, P., Bach, F., Lacoste, A., and Lacoste-Julien, S. (2016). Information-theoretic analysis of generalization capability of learning algorithms.