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Information Decompositions

• Consider variables Y,X,Z, where Y is of interest.

Want to predict Y based on X or Z.

• We can consider the mutual information I(Y ;X) or I(Y ;Z).

This measures redundant + unique information of either.

It does not tell us the unique component.

• We can consider I(Y ;X,Z).

This includes synergistic information that X,Z convey about Y .

It does not tell synergy and redundancy apart.
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Information Decompositions



I(Y ;X) = UI(Y ;X\Z)︸ ︷︷ ︸
unique X wrt Z

+ SI(Y ;X,Z)︸ ︷︷ ︸
shared (redundant)

I(Y ;X|Z) = UI(Y ;X\Z)︸ ︷︷ ︸
unique X wrt Z

+ CI(Y ;X,Z)︸ ︷︷ ︸
complementary (synergistic)

I(Y ;X,Z) = UI(Y ;X\Z) + SI(Y ;X,Z)
+ UI(Y ;Z\X) + CI(Y ;X,Z)
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I(Y ;X,Z)

X

Z

Y

CI

UIX\Z UIZ\X

SI

I(Y ;X,Z)

CoI = SI − CI can be negative.
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I(Y ;Z|X)
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CoI(Y ;X,Z) = I(Y ;X) + I(Y ;Z)− I(Y ;X,Z)
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CoI = SI − CI can be negative.
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Information is not a conserved quantity

Conditioning on an additional random variable can decrease or
increase the mutual information.
CoI(Y ;X;Z) = I(Y ;X)− I(Y ;X|Z) can be positive or negative.

1. If Y = X = Z uniform binary, then

0 = I(Y ;X|Z) ≤ I(Y ;X) = 1.

X and Z convey the same redundant information about Y .

2. If Y and X independent binary, and Z = Y ⊕2 X, then

1 = I(Y ;X|Z) ≥ I(Y ;X) = 0.

Neither X nor Z individually convey any information about Y , but
jointly they convey synergistic information about Y .

Explaining away: Knowledge of a common effect might render
positive or negative dependence between the causes
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Goal: disentangle synergy and redundancy

CI

UIX\Z UIZ\X

SI

I(Y ;X,Z)

Need to fix a degree of freedom
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How do we measure synergy and
redundancy?

• Synergy: the whole is more than the sum of parts (sat Aristotle)

• McGill proposed coinformation (CoI) in [McG54] as a generalization
of mutual information. CoI can be negative

• In neuroscience, negative values of CoI are interpreted as synergy and
positive values as redundancy

• Williams and Beer (2010) proposed a framework to decompose the
mutual information I(Y ;X1, X2, . . . , Xn) into nonnegative
components

• For the bivariate case, two approaches have gained traction:
Harder et al. (2013) and Bertschinger et al. (2014)
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Information Axiomatic vs Operational

Following the axiomatic characterization of entropy, Shannon (1948)
states:

“The real justification of these definitions resides in their implications”

G. Montúfar 11/ 41



The Unique Information
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Decision problems

• Idea: If X has unique information about Y w.r.t. Z, then there must
be a situation in which X “performs better” than Z.

• Consider a decision problem:

An agent chooses an action a ∈ A, with A finite.

She receives a reward u(a, y) depending on the outcome y of Y .

Should she prefer to observe X or Z?

• X has no unique information if it is better to choose Z for any A, u.

This idea only specifies the zero set of UI(Y ;X\Z).
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The Unique Information (UI)
Bertschinger, Rauh, Olbrich, Jost, Ay (2014)

Y Z
µ

X

κ
UIP (Y ;X\Z) := min

Q∈∆P

IQ(Y ;X|Z)

∆P =
{
QY XZ : QY X = PY X , QY Z = PY Z

}
When the diagram commutes, UI(Y ;X\Z) vanishes.

When this vanishes, we can always discard X in favor of Z.

Convex program over a polytope of dimension |Y|(|X | − 1)(|Z| − 1)

G. Montúfar 14/ 41



The Unique Information (UI)
Bertschinger, Rauh, Olbrich, Jost, Ay (2014)

Y Z
µ

X

κ
UIP (Y ;X\Z) := min

Q∈∆P

IQ(Y ;X|Z)

∆P =
{
QY XZ : QY X = PY X , QY Z = PY Z

}
When the diagram commutes, UI(Y ;X\Z) vanishes.

When this vanishes, we can always discard X in favor of Z.

Convex program over a polytope of dimension |Y|(|X | − 1)(|Z| − 1)
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Property (∗)

• Choosing between X and Z only depends on the marginal
distributions of the pairs (Y,X) and (Y,Z).

• Plausible property for information decompositions:

UI(Y ;X\Z) only depends on the margins (Y,X) and (Y, Z).

• In this case, also SI(Y ;X,Z) and UI(Y ;Z\X) only depend on the
margins (Y,X) and (Y, Z).

Hence only the synergy involves “interactions” between X and Z.

G. Montúfar 15/ 41



Property (∗)

Property (∗) holds if and only if the functions

Q 7→ UIQ(Y ;X\Z), Q 7→ UIQ(Y ;Z\X), Q 7→ SIQ(Y ;X,Z)

are constant on

∆P :=
{
Q ∈ ∆ : Q(Y,X) = P (Y,X), Q(Y,Z) = P (Y, Z)

}
.

simplex of joint distributions ∆

∆P P
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Property (∗∗)

• For each P ∈ ∆ there is Q ∈ ∆P with CIQ(Y ;X,Z) = 0.

• This says that for any choice of the margins, there is a joint
distribution with these margins which has zero synergy.

simplex of joint distributions ∆

∆P P
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Theorem 1 (BROJA decomposition)

The only information decomposition that satisfies (∗) and (∗∗) is:

UI(Y ;X\Z) := min
Q∈∆P

IQ(Y ;X|Z),

UI(Y ;Z\X) := min
Q∈∆P

IQ(Y ;Z|X),

SI(Y ;X,Z) := max
Q∈∆P

CoIQ(Y ;X;Z),

CI(Y ;X,Z) := I(Y ;X,Z)− min
Q∈∆P

IQ(Y ;X,Z).

All these problems have the same solution.
The optimization problem is convex.
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Example: The US 1994 census data set

[M. Lichman, UCI ML Repo, 2013, http://archive.ics.uci.edu/ml]

• Sample of the US population from 1994 with 48,842 entries

• Contains features such age, race, education, gender, income level, etc.

• Prediction task: Binary income level threshold USD 50,000.

G. Montúfar 19/ 41
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Example: The US 1994 census data set

hrs/week (X), occup. (Z)

age (X), sex (Z)

edu. (X), occup. (Z)

race (X), occup. (Z)

edu. (X), race (Z)

edu. (X), sex (Z)

SI CI UI(Y ;X\Z) UI(Y ;Z\Y )

CI

UIX\Z UIZ\X

SI

I(Y ;X,Z)

• Education and sex convey about equally large shared and
complementary information about income.

• Most of the information that race and occupation convey about
income, is uniquely in the occupation.

Classical approach: Test if Y − Z −X, i.e., I(Y ;X|Z) = 0.

New insight: Test if I(Y ;X|Z) = CI + UIX\Z is purely synergistic.

Absolute values 0.0853 0.0506 0.0988 0.1095 0.1159 0.1148
G. Montúfar 20/ 41



Slide taken from a recent talk

The BROJA1 decomposition is:

• the theoretically best studied bivariate information decomposition to
date;

• the only bivariate information decomposition with a complete
axiomatic characterization;

• motivated by decision theory (Blackwell setting).

Small print:

• It is non-trivial to compute

1Bertschinger, Rauh, Olbrich, Jost, Ay 2014 (Entropy)
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Computing the Unique Information
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Computing the UI

• Challenge: Although convex, the problem can be very ill-conditioned

• Existing libraries implement Frank-Wolfe algo to compute the UI

- Python package dit https://github.com/dit/dit

- Custom implementation by Makkeh et al (2017) using the Python
interior-point solver CVXOPT https://cvxopt.org/

• We develop an efficient double minimization algorithm, related to the
classical Blahut-Arimoto algorithm for computing the channel capacity
Library: https://github.com/infodeco/computeUI
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Computing the UI
A convex program

UI(Y ;X\Z) := min
Q∈∆P

IQ(Y ;X|Z)

Equivalent problem

I∪(Y ;X,Z) :=I(Y ;Z) + UI(Y ;X\Z)

= min
Q∈∆P

IQ(Y ;X,Z)

Double minimization formulation

I∪(Y ;X,Z) = min
Q∈∆P

IQ(Y ;XZ) = min
Q∈∆P

min
RXZ∈PX×Z

D(Q‖RXZQY ).

Conditional probability formulation

I∪(Y ;X,Z) = min
RXZ∈PX×Z

∑
y

π(y) min
QXZ|y∈∆P,y

D(QXZ|y‖RXZ).

(for parallelization: we can compute each y separately)
G. Montúfar 24/ 41



Computing the UI

π ∼ Y Z
µ

X

κ

∆P =
{
Q ∈ PY×X×Z : QY X(y, x) = π(Y )κy(x), QY Z(y, z) = π(y)µy(z)

}
∆P,Y = ×y∈Y∆P,y

∆P,y =
{
QXZ ∈ PX×Z : QX(x) = κy(x) and QZ(z) = µy(z)

}
, y ∈ Y
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Alternating divergence minimization
(admUI)

Algorithm: Initialize R
(0)
XZ with full support. Recursively define

Step 1: Q
(i+1)
XZ|y = argminQXZ|y∈∆P,y

D(QXZ|y‖R
(i)
XZ) for each y ∈ Y

Step 2: R
(i+1)
XZ = argminRXZ∈PX×Z D(Q

(i+1)
XZ|Y ‖RXZ |π)
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Step 1 can be obtained, e.g., via iterative scaling, in parallel for all y:

Theorem 2 (I-projection)

The nonnegative functions bn on X × Z defined recursively by

b0(x, z) = RXZ(x, z),

bn+1(x, z) = bn(x, z)

[
κy(x)∑
z bn(x, z)

]1/2
[

µy(z)∑
y bn(x, z)

]1/2

,

converge to argminQXZ|y∈∆P,y
D(QXZ|y‖RXZ).

Step 2 admits a closed-form solution:

R
(i+1)
XZ (x, z) =

∑
y∈Y

π(y)Q
(i+1)
XZ|Y (x, z|y).
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admUI algorithm: Convergence properties

Theorem 3 (admUI convergence)

Given π, κ, µ and an initial value R
(0)
XZ ∈ PX×Z of full support, the admUI

iteration converges. The limit limi→∞ πQ
(i)
XZ|Y is a global optimum.
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admUI algorithm: Stopping criteria and
Time complexity

Stopping criterion (main loop) The admUI iteration can be stopped when

max
x∈X ,z∈Z

log
Q

(i+1)
XZ|Y (x,z|y)

Q
(i)
XZ|Y (x,z|y)

≤ ε, for all y ∈ Y,

for some prescribed accuracy ε > 0.

Stopping criterion (I-projection) The error in approximating the true
solution scales inversely with the number of iterations. In practice,
choosing an accuracy parameter ε′ = 10−2ε yields good convergence.

Time complexity Complexity of one iteration of the admUI algorithm is
dominated by Step 1 which costs about O( |Y||X ||Z| log (|X ||Z|)

ε′ ) to find a
solution within ε′ of the true solution.
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Experiments
Code: https://github.com/infodeco/computeUI

Averages over 100 random joint distributions of computed UI value and

computation time (wall-clock) on an Intel 2.60 GHz CPU.
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Experiments
Code: https://github.com/infodeco/computeUI

Comparison of admUI and fmincon for the Copy example Y = (X,Z)

Size ε admUI fmincon

Error Time (ms) Error Time (ms)

24 10−8 9.16 · 10−10 9.03 · 101 9.52 · 10−5 2.38 · 102

10−5 6.67 · 10−7 6.45 · 101

10−3 5.01 · 10−5 1.03 · 101

44 10−8 7.24 · 10−10 2.27 · 102 1.50 · 10−4 4.17 · 102

10−5 5.38 · 10−7 2.67 · 102

10−3 4.13 · 10−5 2.59 · 102

74 10−8 4.93 · 10−10 2.42 · 103 2.32 · 10−4 8.61 · 103

10−5 3.71 · 10−7 2.41 · 103

10−3 2.89 · 10−5 1.97 · 103

104 10−8 3.71 · 10−10 9.38 · 103 3.51 · 10−4 4.86 · 105

10−5 2.82 · 10−7 9.20 · 103

10−3 2.22 · 10−5 8.73 · 103

fmincon (with gradient and Hessian included) settings: Algorithm = interior-point, MaxIterations = 104,
MaxFunctionEvaluations = 105, OptimalityTolerance = 10−6, ConstraintTolerance = 10−8.

Reduce error by 5+ and time by 1+ orders of magnitude
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Applications
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• Refined statistical analysis (e.g. census data)

• Representation learning and Information Bottlenecks (e.g. IB is zero
synergy bottleneck, deficiency bottleneck)

• Analysis of regularizers (e.g. dropout to avoid conspiracies)

• Feature selection (e.g. robustness and decision theoretic advantages)

• RL regularizers / morphological computation

• Secret key

G. Montúfar 33/ 41



Examples of synergy in the sciences

• Neurosciences
• Synergy in neural code (coInformation) – a pair of spikes closely spaced

in time can jointly convey more than twice the information carried by a
single spike [BSK+00]. can be negative

• Synergy, redundancy, and independence (correlational importance) –
nonnegative measure in neural coding [LN05]. can exceed mutual
information

• Hierarchical decomposition (multi-information) – difference of entropies
of information projections [SBB03]. no data processing inequality /
operational interpretation

• Cryptography - secret sharing
• Integer addition modulo k is an important building block in many secret

sharing schemes
• Checksum of several digits can only be computed when all digits are

known
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IB as zero-synergy bottleneck

• IB maximize I(Y ;Z)− βI(X;Z) subject to Y −X − Z.

Lemma 4
If Y −X − Z is a Markov chain, then

UI(Y ;X\Z) = I(Y ;X|Z) = I(Y ;X)− I(Y ;Z).

This implies that the synergy vanishes, CI(Y ;X,Z) = 0.

• IB can be interpreted as a “zero-synergy bottleneck”. Equivalent
formulation of IB: Minimize over e = P (Z|X)

I(Y ;X|Z) + βI(X;Z) = UI(Y ;X\Z) + βI(X;Z)

The sufficiency term depends on the (Y,X) and (Y,Z)-marginals.

The minimality term depends on the (X,Z)-marginal.
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UI and deficiencies

π ∼ Y Z
µ

X

κ

• The UI is similar in spirit to a generalized version of the Le Cam
deficiency [LC64, Rag11]

• Deficiencies measure the cost of approximating one channel from
another via Markov kernels.

• The input deficiency of µ w.r.t. κ is

δπ(µ, κ) := min
λ∈M(Z;X )

D(κ‖λ ◦ µ|π)

• The deficiency is upper bounded by the UI: δπ(µ, κ) ≤ UI(Y ;X\Z)
• δπ(µ, κ) satisfies the following property:

δπ(µ, κ) = 0 if and only if UI(Y ;X\Z) = 0
G. Montúfar 36/ 41



UI the deficiency bottleneck

π ∼ X Y

Z

κ

e d

• The output deficiency of d w.r.t. κ is

δπo (d, κ) := min
e∈M(X ;Z)

D(κ‖d ◦ e|π)

• By convexity of the KL divergence, δπo (d, κ) ≤ I(Y ;X|Z)

• The deficiency bottleneck [BM18] minimizes

δπo (d, κ) + βI(Z;X)
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Operational interpretation

Secret key agreement task

• Alice, Bob and an adversary Eve observe resp. i.i.d. copies of Y , X, Z,
where (Y,X,Z) ∼ P

• Alice and Bob can perform local operations on their subsystems. In addition,
Alice can send a message to Bob over a public channel transparent to Eve

• Alice and Bob wish to convert P into a secret key that is uncorrelated with
Eve. The maximum (asymptotic) rate at which Alice and Bob can compute
a key (length of the key) is called the one-way secret key rate [AC93]

Theorem 5 ([RBOJ19])

UI(Y ;X\Z) is an upper bound on the one-way secret key rate.
G. Montúfar 38/ 41



Quantifying morphological computation

MC: contribution of the embodiment to a behavior

UI has been proposed as a measure of MC [GZR15]

MC = UI(W ′;W\A)
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Quantifying morphological computation

MC: the good the bad and the ugly [ZDM+17]
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Discussion

• Positive information decompositions allow us to disentangle synergy
and redundancy, which is important in multiple applications

• Defining such decompositions has been a long quest

• The BROJA is an option with axiomatic and operational appeal, but
involves a non trivial optimization problem

• We formulated a scalable algorithm for this

G. Montúfar 41/ 41
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G. Montúfar 4/ 18



References V

Johannes Rauh, Pradeep Kr. Banerjee, Eckehard Olbrich, and Jürgen Jost.

Unique information and secret key decompositions.

In Proc. IEEE ISIT (to appear). IEEE, 2019.

Elad Schneidman, William Bialek, and Michael J Berry.

Synergy, redundancy, and independence in population codes.

Journal of Neuroscience, 23(37):11539–11553, 2003.

Paul Williams and Randall Beer.

Nonnegative decomposition of multivariate information.

arXiv:1004.2515v1, 2010.

K. Zahedi, R. Deimel, G. Montufar, V. Wall, and O. Brock.

Morphological computation: The good, the bad, and the ugly.

In 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 464–469, Sep. 2017.
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The Information Bottleneck (IB) problem

π ∼ X Y

Z

κ

e d

• X is an observation or input variable and Y a correlated output
variable of interest.

• The channel κ gives the true relation between the input and output.
In general, it is unknown and only accessible through examples

• Want to learn a more “structured” version of κ.

• Find a pair of maps (e, d) so that Z preserves as much relevant
information as possible about the output (sufficiency) while maximally
compressing the input (minimality)
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The IB curve

• IB maximizes

I(Y ;Z)− βI(X;Z),

over all e ∈ M(X ;Z), where β ∈ [0, 1] is a regularization parameter

• The IB curve traces I(Z;Y ) (sufficiency) vs. I(Z;X) (minimality) for
different values of β

• The IB curve is a concave and monotonically non-decreasing function
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The Variational Deficiency Bottleneck
(VDB)

• The deficiency bottleneck minimizes

δπ(d, κ) + βI(Z;X)

over all e ∈ M(X ;Z), d ∈ M(Z;Y).

• The rate term admits a simple variational upper bound:

I(Z;X) ≤
∫
p(x, z) log e(z|x)

r(z) dx dz, for any r.

• The Variational Deficiency Bottleneck (VDB) objective:

LV DB(e, d) := E(x,y)∼pD

[
− log(

∫
d(y|z)e(z|x) dz) + βD(e(Z|x)‖r(Z))

]
• Relation of the deficiency to the cross-entropy loss:

E(x,y)∼pD

[
− log(

∫
d(y|z)e(z|x) dz)

]
≤ E(x,y)∼pD

[∫
− e(z|x) log d(y|z)dz

]
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The VDB curve for the MNIST dataset

• In the VDB, “more sufficient” means “less deficient”

• The term corresponding to sufficiency is
J(Z;Y ) := H(Y )− E(x,y)∼pD(x) [− log(

∫
d(y|z)e(z|x) dz)]

10 -1 100 101 102 103 104

I(Z;X)

1.5

2

2.5

3

3.5

J(
Z

;Y
)

MNIST VDB curve train test

M = 1
M = 1 train
M = 3
M = 3 train
M = 6
M = 6 train
M = 12
M = 12 train

10 -12 10 -10 10 -8 10 -6 10 -4 10 -2 100
10 -2

10 -1

100

101

102

103

104

I(
Z

;X
)

MNIST VDB IZX vs Beta curve train test

M = 1
M = 1 train
M = 3
M = 3 train
M = 6
M = 6 train
M = 12
M = 12 train

• M is the number of encoder output samples.

• M = 1 corresponds to the Variational Information Bottleneck (VIB).

• Encoder: 784 inputs–1024 ReLU–1024 ReLU–512 linear output units.

• Decoder: A softmax layer.
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IB-plane learning curves on MNIST

• Evolution of
J(Z;Y ) vs. I(Z;X) over 200
training epochs (dark to light
color) with 256D representation.

• For good β values, early epochs
are mainly fitting (J(Z;Y )↗),
while later epochs are mainly
discarding information about the
input (I(Z;X)↘).

• At higher values of M (our
method), the representation
captures more information about
the output while discarding more
information about the input.
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2D representations of MNIST

• Posterior
distributions of
1000 input images
after training.

• Color corresponds
to the class label.

• For β = 10−5, the
representations of
different classes are
well separated.
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Blackwell property of the UI

UI satisfies the following key property which we call the Blackwell property
of the UI:

Lemma 6 (Vanishing UI [BRO+14, Lemma 6])

For a given joint distribution PY XZ , UI(Y ;X\Z) vanishes, i.e.,
minQ∈∆P

IQ(Y ;X|Z) = 0, if and only if there exists a random variable X ′

such that Y − Z −X ′ is a Markov chain and PY X′ = PY X .

Blackwell’s theorem [Bla53, BR14] implies:

Corollary 7

A vanishing UI(Y ;X\Z) is equivalent to the fact that any decision
problem in which the task is to predict Y can be solved just as well with
the knowledge of Z as with the knowledge of X.
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Secret key rate definition

Definition 8 ([Mau93])
The two-way secret key rate denoted S↔(Y ;X|Z), is the maximum rate R such that for every ε > 0 and sufficiently large n,
there exists a two-way public communication protocol that outputs keys K and K ′ (ranging over some common set K) satisfying

Pr[K = K
′
] ≥ 1− ε (reliability),

1

n
H(K) > 1

n
log |K| − ε (uniformity),

1

n
I(K;C,Z

n
) ≤ ε (weak secrecy),

and achieving 1

n
H(K) ≥ R− ε, where C is the amount of public communication consumed in the protocol. We say that the

protocol is one-way if Alice is allowed to send only one message and Bob none. The corresponding key rate is called the one-way
secret key rate S→(Y ;X|Z).

The first and second condition ensure, resp., that the keys are equal to each other with high probability and that they are almost
uniformly distributed. The third condition ensures that the rate at which Eve learns information about the keys is negligibly small.
MODEL: Maurer proposed the following interactive model called the source model for secret key agreement [Mau93, MW99].
Alice, Bob and Eve observe n i.i.d. copies of random variables Y , X and Z resp., where (Y,X, Z) is distributed according to
some joint distribution known to all parties, called the source. Alice and Bob wish to agree on a common secret key by
communicating interactively over a public channel transparent to Eve. A two-way public communication protocol proceeds in
rounds, where Alice and Bob exchange messages in alternating order, with Alice sending messages in the odd rounds and Bob in
the even rounds. Each message is a function of the sender’s observation and all the messages exchanged so far. At the end of the
protocol, Alice (resp., Bob) computes a key K (resp., K ′) as a function of Y n (resp., Xn) and C, the set of all exchanged
messages.
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More than three variables

There is a decomposition scheme proposed by Williams and Beer [WB10].
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The idea of Williams and Beer

What happens for more random variables?

Y1 Y2 Y3
. . . Yn

S

Partial information lattice (Williams, Beer 2010):
Decomposition framework based on a measure of redundancy

I∩(S : A1; . . . ;Ak), A1, . . . , Ak ⊆ {Y1, . . . , Yn}.

Basic idea: Classify information according to “who knows what”.

Due to synergistic effects, “who” not only refers to random variables, but
to subsets of random variables.
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Axioms for Shared Information

Williams and Beer propose that I∩ should satisfy:

• I∩(S : A1; . . . ;Ak) is symmetric in A1, . . . , Ak.

• I∩(S : A1) = MI(S : A1).

• I∩(S : A1; . . . ;Ak;Ak+1) ≤ I∩(S : A1; . . . ;Ak), with equality if
Ai ⊆ Ak+1 for some i ≤ k.

Notes:

1. Intuition of the last axiom: Information on the left is a subset of
information on the right.

2. The axioms imply that it is enough to know the values
I∩(S : A1; . . . ;Ak), where (A1; . . . ;Ak) is an antichain;
i.e. Ai 6⊆ Aj for all i 6= j.
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Local positivity

To decompose the information, we need a function I∂ with

I∩(S : A1; . . . ;Ak) =
∑

(B1,...,Bl)�(A1,...,Ak)

I∂(S : B1; . . . ;Bl).

I∂ can be computed by Moebius inversion.
If I∂ ≥ 0, then we call I∩ locally positive.

Example

For n = 2 we obtain:

CI(S : Y1;Y2)

UI(S : Y1 \ Y2) UI(S : Y2 \ Y1)

SI(S : Y1;Y2)

I(S : {Y1, Y2})

I(S : Y1) I(S : Y2)

SI(S : Y1;Y2)
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Status of the Williams-Beer program

Open problem:

How to define the functions I∩ and I∂ .

Current status:

1. There is no convincing proposal for a general information
decomposition along this framework.

2. To the contrary, there are some impossibility results.

3. There is a number of bivariate (n = 2) information decompositions.

Questions:

1. Is the PI lattice correct? Is the WB program doable?

2. How to distinguish different (bivariate) information decompositions?

G. Montúfar 18/ 18


	Disentangling Synergy and Redundancy
	The Unique Information
	Computing the Unique Information
	Applications
	Appendix

