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• X is an input variable (e.g., image) and Y an output variable of interest (e.g., label)

• The channel κ is unknown and only accessible through a training set

• Problem: Find a pair of stochastic maps (e, d) so that Z preserves as much relevant
information as possible about the output (sufficiency) while maximally “compressing” the
input (minimality)
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The Information Bottleneck (IB)

• Approximate minimal sufficiency: The IB maximizes

IQ0(Z;Y ) − βIQ0(Z;X), β ∈ [0, 1]

• IB curve: B is the (point-wise) smallest function for which

I(Z;Y ) ≤ B(I(Z;X)) ≤ I(Z;X) for all Y −X − Z
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The Deficiency Bottleneck (DB)

• The deficiency of d w.r.t. κ is

δπ(d, κ) := min
e∈M(X ;Z)

DKL(π × κ‖π × κ̂)

• The DB minimizes

δπ(d, κ) + βI(X;Z)

over all pairs (e, d), where β ∈ [0, 1] is a regularization parameter
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Deficiency and Input Blackwell Sufficiency

Definition (Input Blackwell sufficiency [Bla53, Nas18])

Given two channels, κ ∈ M(X ;Y) and d ∈ M(Z;Y), κ is input-degraded from d, denoted
d �Y κ, if κ =

∫
d(y|z)e(z|x) dz for some e ∈ M(X ;Z). We say that d is input Blackwell

sufficient for κ if d �Y κ.
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The Variational Deficiency Bottleneck (VDB)

L :=
1

N

N∑
i=1

− log(
1

M

M∑
j=1

[dψ(y
(i)|f(x(i), ε(j)))]) + βD(eφ(Z|x(i))‖r(Z))


eφ(z|x) = N (z|fµe (x), fΣ

e (x)) dψ(y|z) = softmax(y|fd(z)) r(z) ∼ N (0, I)

For M = 1, we recover the Variational Information Bottleneck (VIB) objective [AFDM17]
Banerjee and Montúfar, IEEE IJCNN/WCCI-2020 Special Session I-SS6: Bayesian Neural Networks 5/ 9



The VDB curve for MNIST

• In the VDB, “more sufficient” means “less deficient”
J(Z;Y ) := H(Y )− E(x,y)∼pD(x) [− log κ̂(y|x)]

• Use M encoder samples to compute the expectation inside the log. J(Z;Y ) = I(Z;Y ) for M = 1
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• For good values of β, higher values of M (our method) lead to a smaller generalization gap and
more compression of the input for the same level of sufficiency
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2D representations for MNIST

VIB VDB (k = 5) VDB (k = 10) VDB (k = 20)

Posterior Gaussian distributions of 1000 test images from MNIST after training with the VIB, and the VDB
with k = 5, 10, 20 encoder update steps per decoder update. β = 10−3, M = 1. Colors correspond to the 10
different class labels.

• Nested optimization strategy to approximate the deficiency

min
d∈M(Z;Y)

[
min

e∈M(X ;Z)

[
D(π × κ‖π × κ̂) + βD(π × e‖π × r)

]]
, κ̂(y|x) =

∫
d(y|z)e(z|x) dz

• Improved out-of-distribution robustness on MNIST-C [MG19] and CIFAR-10-C [HD19]
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Information plane learning curves for MNIST

[SZT17]
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Conclusions

• A new bottleneck method for learning data representations based on information
deficiency, rather than the more traditional information sufficiency

• VDB and VIB coincide in the regime of single-shot Monte Carlo approximations

• Training with the VDB improves out-of-distribution robustness over the VIB on two
benchmark datasets, MNIST-C [MG19] and CIFAR-10-C [HD19]

• Unsupervised version of the VDB shares superficial similarities with the Importance
Weighted Autoencoder (IWAE) [BGS16]
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