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Overview

We point out that a number of well-known PAC-Bayesian-style and
information-theoretic (IT) generalization bounds for randomized learn-
ing algorithms can be derived under a common framework starting from
a fundamental information exponential inequality.
Three key ideas guide our discussion:
1. The lesser the information revealed by an algorithm about its input,
the better the generalization.

2.Data-dependent priors entail tighter generalization bounds.
3.Optimizing such bounds is a natural recipe for designing new learning
algorithms.

General formulation of learning problem

·Examples domain Z = X × Y of instances and labels
·Hypothesis space W , and a fixed loss function ` :W ×Z → [0,∞)
·A learning algorithm, which is a Markov kernel PW |S with
· Input: Training data S = (Z1, . . . , Zn), Zi

i.i.d.∼ µ
·Output: hypothesis W ∈ W , which is a random element of W

·True risk of a hypothesis w ∈ W on µ, Lµ(w) := Eµ[`(w,Z)]
·Empirical risk on the training sample S, LS(w) := 1

n

∑n
i=1 `(w,Zi)

Goal is to control the generalization error, g(W,S) := Lµ(W ) −
LS(W ), either in expectation or with high probability.

·The expected generalization error can be written as the difference of
two expectations of the same loss function,

ESW [g(W,S)] = EPS⊗PW [LS(W )]− EPSW [LS(W )],
where PSW = µ⊗n ⊗ PW |S.

Key insight.The expected generalization error reflects the depen-
dence between the input data and the output hypothesis, and this
dependence can be measured by their mutual information (MI).

The information exponential inequality

·For any β > 0, we define the annealed expectation, Mβ(w) =
−β−1 lnEµ[e−β`(w,Z)], which acts as a surrogate for Lµ(w).

Lemma 1 (Information exponential inequality, IEI [Zhang, 2006]).
For any prior Q over W, any real-valued loss `, and any posterior
distribution P � Q over W that depends on an i.i.d. training
sample S, we have ES exp

{
nβEP [Mβ(W )− LS(W )]−D(P‖Q)

}
≤ 1.

·The IEI implies bounds both in probability and in expectation for the
quantity nβEP [Mβ(W )− LS(W )]−D(P‖Q), and is the key tool for
showing our main result:

Theorem 2.Let Q be a prior distribution over W that does not
depend on S, and let ` be a real-valued loss function on W × Z.
Suppose that there exist a convex function ψ : R≥0→ R satisfying
ψ(0) = ψ′(0) = 0, such that supw∈W[Lµ(w)−Mβ(w)] ≤ ψ(β)

β , ∀β > 0.
Then, for any β > 0, and δ ∈ (0, 1], with probability of at least 1− δ
over the choice of S ∼ µ⊗n, for all distributions P � Q over W
(even such that depend on S), we have

EP [g(W,S)] ≤ 1
nβ

(
D(P‖Q) + ln 1

δ

)
+ ψ(β)

β
. (1 )

Moreover, we have the following bound in expectation:

ESW [g(W,S)] ≤ ψ∗−1
D(P‖Q|PS)

n

, (2 )

where ψ∗−1 is the inverse of the Fenchel-Legendre dual of ψ.

Recovering known IT and PAC-Bayes bounds

·Under a sub-gaussian loss assumption, we recover the MI-based
bound due to [Xu and Raginsky, 2017]:

Corollary 3. If `(w,Z) is σ-sub-Gaussian under µ for all w ∈ W,
then ESW [g(W,S)] ≤

√
2σ2I(S;W )/n.

·Under a sub-gamma loss assumption, fixing β = 1 in (1), we recover
the PAC-Bayesian bound due to [Germain et al., 2016]:

Corollary 4. If `(w,Z) (σ, c)-sub-gamma with c < 1, then with
probability of at least 1 − δ over the choice of S ∼ µ⊗n, for all
P � Q over W, EP [g(W,S)] ≤ 1

n(D(P‖Q) + ln(1/δ)) + σ2

2(1−c).

Differentially private data-dependent priors

·To have a good control over the KL term in (1), it is desirable that Q
be “aligned” with the data-dependent posterior P .

Key insight.Choosing Q based on S in a differentially private
fashion allows us to treat Q “as if” it is independent of S.

·We have the following result:

Theorem 5.Let K(S,W) denote the set of Markov kernels from S
toW. Let Q0 ∈ K(S,W) be an (ε, 0)-differentially private algorithm.
Let ` be a real-valued loss on W ×Z, let β > 0, and let δ ∈ (0, 1].
Then with probability of at least 1− δ over the choice of S ∼ µ⊗n,
for all distributions P over W,

EP [Mβ(W )] ≤ EP [LS(W )] +
D(P‖Q0(S)) + ln 2

δ + nε2

2 + ε
√
n
2 ln 4

δ

nβ
.

Information complexity minimization (ICM)

·Given a prior, choosing a posterior to minimize a PAC-Bayesian bound
gives rise to a method called information complexity minimization.

·Practical examples of ICM for learning with neural networks, e.g.,
Entropy-SGD [Chaudhari et al., 2017], can be viewed as optimization
schemes that search for “flat minima” solutions.

·We show a PAC-Bayes bound motivated by an Occam’s factor argu-
ment in relation to flat minima.
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