Research
My research interests lie in the areas of information theory, causal inference, deep learning, and reinforcement learning.
I am grateful for some wonderful collaborations over the years. My Google Scholar page is here.
Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montúfar (2023)
FoSR: First-order Spectral Rewiring for addressing Oversquashing in GNNs
International Conference on Learning Representations (ICLR 2023)
PDF | SlidesJohannes Rauh, Pradeep Kr. Banerjee, Eckehard Olbrich, Guido Montúfar and Jürgen Jost (2023)
Continuity and Additivity properties of Information decompositions
International Journal of Approximate Reasoning (2023)
arXiv | IJAR 2023Pradeep Kr. Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar (2022)
Oversquashing in GNNs through the lens of Information contraction and Graph expansion
58th Annual Allerton Conference on Communication, Control and Computing
arXiv | Allerton 2022Hui Jin, Pradeep Kr. Banerjee and Guido Montúfar (2022)
Learning Curves for Gaussian Process Regression with Power-Law Priors and Targets
International Conference on Learning Representations (ICLR 2022)
PDFPradeep Kr. Banerjee and Guido Montúfar (2021)
Information Complexity and Generalization Bounds
IEEE International Symposium on Information Theory
arXiv | ISIT 2021 | SlidesHui Jin, Pradeep Kr. Banerjee and Guido Montúfar (2021)
Power-law Asymptotics of the Generalization Error for GP Regression under Power-Law Priors and Targets
NeurIPS 2021 Bayesian Deep Learning Workshop
PDFPradeep Kr. Banerjee and Guido Montúfar (2021)
PAC-Bayes and Information Complexity
ICLR 2021 Neural Compression Workshop
PDF | PosterPradeep Kr. Banerjee and Guido Montúfar (2020)
The Variational Deficiency Bottleneck
IEEE International Joint Conference on Neural Networks
arXiv | IJCNN 2020 | SlidesJohannes Rauh*, Pradeep Kr. Banerjee*, Eckehard Olbrich, and Jürgen Jost (2019)
Unique Information and Secret Key Decompositions
IEEE International Symposium on Information Theory
arXiv | ISIT 2019 | SlidesPradeep Kr. Banerjee, Johannes Rauh, and Guido Montúfar (2018)
Computing the Unique Information
IEEE International Symposium on Information Theory
arXiv | ISIT 2018 | Code | Slides of a talk by Guido Montúfar at the CVPR 2019 Workshop on Semantic InformationPradeep Kr. Banerjee, Eckehard Olbrich, Jürgen Jost, and Johannes Rauh (2018)
Unique Informations and Deficiencies
56th Annual Allerton Conference on Communication, Control and Computing
arXiv | Allerton 2018Johannes Rauh, Pradeep Kr. Banerjee, Eckehard Olbrich, Jürgen Jost, Nils Bertschinger, and David H. Wolpert (2017)
Coarse-graining and the Blackwell Order
arXiv | Entropy 2017, 19(10), 527Johannes Rauh, Pradeep Kr. Banerjee, Eckehard Olbrich, Jürgen Jost, and Nils Bertschinger (2017)
On Extractable Shared Information
arXiv | Entropy 2017, 19(7), 328
Ph.D. thesis: Unique information and the Blackwell order, Leipzig University, 2019.
Reviewing: NeurIPS, ICLR, ICML, TMLR, ISIT, IEEE TNNLS, IEEE TPAMI.
I co-organize the Math Machine Learning Seminar MPI MiS + UCLA with Guido Montúfar.